
Design Study for the Development of Channel Coding Layer for a
Packet Telecommand Decoder Based on CCSDS Recommendations

for Satellite Communication on FPGA

Haifa Yousuf Al-Bastaki
Mohammed Bin Rashed Space Centre

 Dubai, United Arab Emirates
Haifa.albastaki@mbrsc.ae

ABSTRACT

In the Bus System of any Communication Satellite, there exists a Telecommand (TC) Subsystem which plays

a critical role in ensuring that telecommands sent from the ground are correctly received, decoded, and processed by

the satellite. Following the recommendations of the Consultative Committee for Space Data Systems (CCSDS), a

layered model is used to design a decoder system for any Packet Telecommand Decoder (PTD), which is central to the

Telecommand data process. The benefit of adhering to CCSDS standards is the ability to operate the satellite from any

standardized CCSDS ground station, enhancing cross-support capabilities. This study aims to explore the development

of the Channel Coding Layer according to CCSDS recommendations, with the focus on designing the programming

logic for the decoder system, which manages services related to synchronization and error correction and detection in

transmitted data. The paper details the algorithm design logic of two core elements within the layer: 1) the Finite State

Machine (FSM) controller which provides synchronization services to control the layer’s decoding process 2) the

Decoder, designed using Modified BCH (63,56) (Bose-Chaudhuri-Hocquenghem) code, which operates using single

error correction and double error detection mode (SEC). The designed flowcharts and block diagrams illustrate the data

flow and operational steps of the overall decoding process. This systematic approach to designing and organizing the

decoding algorithm logic lays the groundwork for programming the channel coding layer using VHSIC Hardware

Description Language (VHDL) and testing it on Field-Programmable Gate Array (FPGA) in future work. This paper

uniquely addresses the gap between the CCSDS recommendations and the practical implementation by translating

textual guidelines and recommendations into a structured, executable, and actionable design approach! It also

implements and tests the state control logic algorithm modeled for the channel coding layer using VHDL.

Keyword: - Packet Telecommand Decoder, Channel Coding Layer, CCSDS, Finite state machine, BCH (63,56) code,

Decoder.

1 INTRODUCTION

The Channel Coding Layer is one of the essential layers to consider when designing a Packet Telecommand
Decoder (PTD) for communication satellites. According to [4], several CCSDS layers were implemented to develop a
PTD capable of fully performing the receiving-end functionality of a telecommand decoder system. The system
architecture of this single-chip implementation of the TC Decoder Core represents the integration of several CCSDS
layers. The internal architecture of the PTD described in [4] addresses five layers dedicated to the Synchronization and
Channel Coding Sublayer and the Data Link Protocol Sublayer of the CCSDS protocol, as shown in Figure 1. One of
the layers is the Channel Coding Layer which is the first layer encountered once the telecommand has been
successfully received and bit modulation is detected in the physical layer. This study focuses on the detailed design of
the Channel Coding Layer core, whose primary objective is to decode and process only error-free protocol data units
(PDUs) for the above layers. The design of this layer relies on two main components: the Finite State Machine (FSM)
controller and the BCH (63,56) decoder, both essential to its functionality. The following sections model the
programming logic design of these core elements according to CCSDS standards, outlining a plan of action to bridge
the gap between theoretical guidelines and real-world implementation. By transforming recommendations into visual
roadmaps, this approach aims to promote logical thinking, break down design challenges, and apply structured
solutions to the design of the Channel Coding Layer.

mailto:Haifa.albastaki@mbrsc.ae

1

1.1 Channel Coding Layer Overview

The channel coding layer plays a crucial role in ensuring that the symbol streams of the received
telecommands from the channels are correctly structured according to CCSDS protocols. It also applies error correction
and detection techniques to guarantee that only error free data is passed to the next layer. As outlined in [3], the overall
“Reception Logic” of the channel coding Layer is represented as a Sate diagram with 3 main states which are 1)
INACTIVE STATE 2) SEARCH STATE and 3) DECODE STATE. Thus, the design of a finite state machine is
necessary to fulfill the intended functionality of this layer. While the principal objective of the channel coding layer is to
decode the channel symbol streams, which happens in the DECODE STATE (the final state), it is also responsible for
performing synchronization services such as checking if the channel is active, Coded symbol stream is available, and
the start of the Protocol Data Unit (PDU) is recognized. It is important to note that the decoding of the telecommand
symbol streams cannot begin unless the layer is in the DECODE STATE. At this point, the BCH (63,56) decoder is
used to decode the channel’s coded symbol streams in Single Error Correction (SEC) mode. This mode allows the
decoder to correct one-bit errors and detect two-bit errors.

1.2 Channel Coding Layer Protocol Data Unit (PDU)

As shown in figure 2, the physical Layer is limited to detecting Acquisition and Idle Sequence, and separating

Command Link Transmission Unit (CLTU) from the TC packets at the receiving end. It then passes those CLTU’s to

the channel coding layer. Therefore, The CLTU is the Protocol data unit (PDU) of the channel coding layer.

Each CLTU (Command Link Transmission Unit) represents a frame and consists of a start sequence, multiple code

blocks, and a tail sequence, as shown in the figure below. It is important to be familiar with the PDU of the layer to

ensure correct data processing, compatibility, and adherence to CCSDS protocol standards in the design.

Figure1. CCSDS Layers Implemented in the PTD

Figure2. Protocol Data Unit of Channel Coding Layer [4]

2

At the receiving end, the telecommand codewords will be decoded using the BCH (63,56) decoder for this paper’s

design. Therefore, CCSDS recommends that the CLTU have the structural components shown in Figure 3 for the

chosen decoder [3]. The CLTU must consist of the followings: -

• Start Sequence: A unique, fixed-length pattern of 16 bits (2 octets). The pattern is 0xEB90 in hexadecimal,
indicating the start of a CLTU.

• Tail Sequence: A unique, fixed-length pattern of 64 bits (8 octets). The pattern chosen is (555555555…) in
hexadecimal representing alternating zeros and ones in binary as described in [4]. The pattern must end with a
binary "1" to form a “5” in hexadecimal. This unique pattern is constructed to force the decoder to recognize the
end of the CLTU.

• Code block: Code blocks are placed between the Start and Tail sequences and contain both information and error
control field bits, as shown in the figure below. A single code block bit length is fixed to 64 bits as it is the most
efficient of the options and the recommended standard according to CCSDS [1]. The maximum number of code
blocks that can be sent through a single CLTU may vary, as described in [3] & [1]. For this study, the code block
bit length is set to the standard recommended bit length n=64 bits, and the maximum number of code blocks that
can be sent through a CLTU is chosen to be 37 as in [4].

Each code block (8-octet ➔64 bits) allocates 1 octet to the error control field and the remaining 7 octets to the

information field. These bits are generated at the sending end using a systematic block coding procedure, which

processes 56 information bits and generates 7 parity check bits used for error control at the receiving end (per code

block) [3]. The last bit (LSB) in the error control field, known as the filler bit, is appended to complete the 8-bit error

control field and serves to distinguish between information and tail code blocks. This is because a tail sequence block

will always have a filler bit = ‘1’ whereas an information code block will always have a filler bit = ‘0’.

1.3 Channel Coding Layer Block Diagram – Design Description

The channel coding layer block diagram in figure 5 describes the inputs and outputs of our designed layer

block and provides a high-level understanding of how the overall core will operate. The inputs to the design block are

system clock signal, reset signal, and several channel lines. Each channel will consist of 3 input lines which are:

➢ Symbol Stream signal (TCS)
➢ Active Signal (TCA)
➢ Channel Clock Signal (TCC)

Figure3. Command Link Transmission Unit structural components [4].

Figure4. Code block components [4]

3

Similarly, these channel input signals have been derived from the design in [4] for the channel coding layer. Table 1.

provides the signal description of each channel input line.

Table 1. Channel Input Signal Lines to the Channel coding Layer block Design

Signal Name Signal Description

Channel Active Signal

(TCA)

Represented as either “1’ or “0” and serves as an enable signal to

indicate that the channel is active for the availability of the symbol stream.

Channel Clock Signal

(TCC)

Represents the channel clock signal. This signal can only be

recognized while TCA is asserted high

Channel Symbol Stream

signal (TCS)

Represents the data sent through the channel. The bit data is valid

at every falling edge of the channel clock signal.

This paper’s design will be limited to 3 channel inputs. Therefore, total of 6 input lines from the channels will be inputted

in total. However, the channel coding layer implemented in [4] can receive up to 6 channels. Moreover, The Outputs

of the design block are described in Table 2 at the end of section 1.4. The designed coding layer will generate signals

to provide feedback on the core’s performance and to monitor if the design is functioning as intended.

Channel Coding Layer

FSM Controller

Inactive state
(S1)

Search state
(S2)

Decode state
(S3)

(SEC)
Decoder

Component

System Clock

RESET

TCA
TCC
TCS

TCA
TCC
TCS

Ch 1

Ch 2

No Bit Lock Signal

Selected Channel Value
siga
End of Sequence sign

Abort Signal

Output Code Block
TCA
TCC
TCS

Ch 3

(SEC)
Decoder

Code Blocks
 Single error corrections counter

Component

INPUTS OUTPUTS

Rejected Code block Flag

 Accepted Code block counter

 Output code block

RESET

SYSTEM CLOCK
 Syndrome value

 Errors detected

Figure5. Channel Coding Layer Block Diagram

4

The design study of the channel coding layer decoding process will be divided into two main parts: 1) the Finite State

Machine (FSM) and 2) the SEC Decoder. The SEC Decoder will be treated as a component that operates when the

FSM is in the Decode state. The first objective is to design the programming logic for the FSM to ensure that the channel

is active and the CLTUs are recognized, allowing the proper retrieval of code blocks following CCSDS

recommendations (synchronization services). Once FSM transitions to final state (DECODE) and the coded symbol

streams are correctly sampled, the SEC decoder can then begin the decoding process, with the code blocks passed to

it. As such, the SEC Decoder will be designed as a separate component. Finally, to achieve the full functionality of the

channel coding layer, the two designs will be integrated and used together in future work.

1.4 Finite State Machine Programming Logic Design Methodology & Modelling

The Finite State Machine (FSM) design follows the CCSDS-recommended procedures for receiving a CLTU

at the receiving end [1]. The FSM will consist of a finite number of states and transitions triggered by specific inputs,

referred to as "events." The FSM states are: 1) Inactive-S1, 2) Search-S2, and 3) Decode-S3. The operation of the

channel coding layer’s FSM has been outlined in high-level textual guidelines and recommendations by the CCSDS.

Now, it’s time to translate those descriptions and arrange them into actionable and executable design to develop a

state control logic for the Layer’s decoding process!

1.4.1 INACTIVE State (S1): Operation principle and Logic Flowchart

This is the idle/default state of the FSM. In this state, the process of detecting an active channel signal (TCA)
occurs simultaneously across all three channels, meaning it monitors TCA1, TCA2, and TCA3 at the same time. As
outlined in Table 1, the TCA signal acts as an enable signal that indicates the channel is active and that symbol streams
are available on that channel. Therefore, when TCAi = "1" for any channel, it means that channel is activated; if TCAi
= "0," it indicates that the channel is deactivated. Initially, the TCA signal is active low. It is important to note that all
channels will have equal priority in this state for the design of this paper.

To clarify, the FSM will monitor three separate channels simultaneously. Once a TCA signal is detected as "high" on
one or more channels, the FSM will transition to the next state, the Search State. Multiple channels can be activated
at the same or different times. Regardless of when the channels become active, even if not all channels activate at the
same instant, the FSM will still transition to the next state for the respective active channel.

Upon detecting an active channel, the FSM will output a signal called "NO_bit_lock" and set it to "0". Initially, this signal
is active high, indicating that no channel is active, but it goes low once any TCA i signal is detected. Below flowchart
summarizes the process of the INACTIVE State.

Figure6. Channel Coding Layer Sate Diagram

5

1.4.2 SEARCH State (S2): Operation principle and Logic Flowchart

When the FSM Transitions to SEARCH state for any channel, The “TCA” of the Activated channel shall always

remain high TCAi=‘1’, else the FSM transitions back to the INACTIVE STATE for that channel. The No Bit Lock signal

is set to ‘1’ when all channels are deactivated therefore if at least one channel is active and the remaining got

deactivated in S2 the signal stays ‘0’.

The FSM in this state will start searching for the Start Sequence pattern “0xEB90” SIMULTANOUSLY on all activated

Channels. The channel Symbol Stream signal (TCS) is detected on every falling edge of the channel clock signal (TCC)

as described in [4].

Paper [1] provides two options in the CLTU reception procedure for detecting the start sequence in relation to error

handling. Option 1 requires strict detection with no errors allowed in the start sequence. Option 2 allows for a single

error in the start sequence while still considering it valid. Since SEC mode was selected for the channel coding layer

design, CCSDS recommends using Option 2. Allowing a single error in the start sequence increases reliability by

reducing the probability of rejecting valid start sequences, especially in designs with Bit Error Rates (BER) of 10⁻⁵ or

higher. Therefore, we will proceed with option 2 in which the designed FSM will allow only one bit error anywhere within

the 16-bit start sequence pattern 0xEB90: = ‘1110 1011 1001 0000’ and still consider it correct!

Figure7. INACTIVE State (S1): Logic Flowchart

Figure8. TCS bits Sampling process [4]

‘0’

6

In [4], the coding layer core design also allows the detection of the inverse of the start sequence, which is 0x146F in

hexadecimal, while permitting a single bit error in the inverted sequence. According to the [1], the reason for enabling

detection of both the start sequence (0xEB90) and its inverse (0x146F) is to address data ambiguity in the received bit

stream (with respect to ‘0’ and ‘1’) that may be introduced due to non-return-to-zero (NRZ) encoding in the incoming

start bit streams. The physical layer can typically resolve this ambiguity based on the modulation scheme used.

However, if this ambiguity is not resolved at the physical layer, CCSDS recommends handling it by searching for both

the start sequence and its inverse, allowing a single bit error in each, and still considering them valid. For the design in

this paper, it is assumed that the data ambiguity is resolved by the physical layer, and the designed core will only search

for the start sequence "0xEB90” allowing one bit error anywhere.

Moreover, In the Search State (S2), only one channel is selected for the Decode State (S3), while the others are
discarded. This means that the search occurs simultaneously across all active channels until a start sequence is
detected on one channel. Once the start sequence is found on a certain channel, that channel is the only one to move
to the Decode state, and the remaining channels are discarded until the next channel selection occurs. The FSM will
lock the selection to the first channel where the start sequence is detected and discard the others. After detecting the
start sequence and locking onto one channel, the FSM transitions to the next state, the Decode State (S3).

Upon transitioning to S3, the FSM outputs two signals:

1. DECODE_SIG: This signal goes high following the detection of the start sequence, indicating that the state
transition will occur. (This will be an internal signal in our design)

2. SELECTED_CHANNEL_VALUE_SIG: This is a 3-bit vector that represents the value of the selected channel
where the start sequence was first detected.

 Figure9. SEARCH State (S2): Logic Flowchart

7

1.4.3 DECODE State (S3): Operation principle and Logic Flowchart

The Decode State (S3) represents the final state of the Channel Coding Layer FSM. In this state, the bit
streams are decoded using the SEC decoder. However, aside from the actual decoding process, the state must also
manage several other tasks to prepare the data for decoding and ensure that the process follows CCSDS
recommendations. This section will focus on the control logic for this state within the FSM, treating the SEC decoder
as a black-box component. As mentioned earlier, the SEC decoder will be designed separately and later linked to the
FSM design.

During this State, the FSM will receive the continuous bit stream and treat every 64 bits as a single code block, which
aligns with the format structure shown in Figure 4. Therefore, each 64-bit segment of the bit stream will be extracted
and organized into a distinct code block before being passed to the SEC decoder for further processing.

While the FSM is in the Decode State, it will continuously monitor several conditions. If any of these conditions are
triggered, the FSM will be forced to exit the Decode State and halt the decoding process. These conditions are critical
for ensuring that the system operates correctly and reliably during decoding.

1. The TCA signal of the selected active channel must always remain high ('1'). If, at any time during the Decode
State (S3), the TCA signal goes low ('0')—indicating channel deactivation—the FSM will transition to the
Inactive State and send a signal to abort the entire octets, assuming any code blocks had already been sent
to the upper layer. At this point, the NO_bit_lock signal is set to '1', and the entire cycle is repeated for all
channels.

2. If a timeout occurs on the channel clock signal (TCC) of the selected active channel (i.e., TCC is not detected
for a certain period), the FSM will transition back to the Search State and send a signal to abort the entire
octets, assuming any code blocks had already been sent to the upper layer. The timeout value can be
determined based on your design parameters, such as system clock frequency, channel clock period, baud
rate and other factors. This timeout mechanism is based on the method described in [4] and serves as a
protection measure to reactivate the channel selection mechanism, ensuring the FSM does not remain locked
on a channel without a clock signal in the event of a receiver breakdown.

3. If the Tail SEQUENCE is encountered, which has the same size as a code block (64 bits) but is specifically
constructed to force the decoder to stop, the FSM will transition back to the Search State and send a signal
indicating the end of the code block transfer. The Tail SEQUENCE is a unique pattern explained in section
1.2. In this case, there is no need to send an abortion signal as this simply indicates the normal end of the
CLTU transmission.

4. If more than 37 code blocks were received and no TAIL Sequence has been encountered, the FSM transitions
back to the Search State and sends a signal to abort the entire octets, assuming any code blocks had already
been sent to the upper layer. This occurs because the size of the code blocks within the CLTU has been
predefined for this design (section 1.2). Therefore, based on the size you have set for the code blocks in the
CLTU, this mechanism shall apply accordingly.

5. If the “single error corrected” code block outputted from the SEC decoder had the last bit, the filler bit, as '1',
it will be considered as a Tail sequence. The FSM transitions back to the Search State and sends a signal
indicating the end of the code block transfer. In this case, there is no need to send an abortion signal as this
simply indicates the normal end of the CLTU transmission. (note: this case doesn’t apply on error-free code
blocks outputted from the SEC decoder)

6. If the code block rejection flag from the SEC decoder is ‘0’ which indicates that the code block passed to it is
found uncorrectable (more than single bit error was found), the FSM transitions back to the Search State and
sends a signal indicating the end of the code block transfer. In this case, there is no need to send an abortion
signal as this simply indicates the normal end of the CLTU transmission.

For case number 5, it should be noted that the SEC decoder ignores the filler bit during decoding (further discussed in
section 1.6). Therefore, this technique (Case 5) is used to significantly reduce the likelihood of missing a tail sequence,
but it comes with the drawback of a slightly increased frame rejection rate. This occurs because an information code
block may be error-free after correction, but a bit flip in the filler bit could cause the block to be rejected (recall that all
information code blocks filler bits are set to ‘0’ during transmission). Under this algorithm, such a code block would be
rejected even though the information is correct. Without this algorithm, the erroneous filler bit would not be checked,

8

and the code block would be accepted. Although this method is optional, it has been included to avoid missing a tail
sequence, which could otherwise lead to missing the next CLTU [1] [5].

Figure10. DECODE State (S3): Logic Flowchart

‘1’

9

1.4.4 Coding Layer Block Top Entity Input and Output ports

Referring to the outputs mentioned in the Coding Layer block diagram in Figure 5, these signals have been
summarized in the below table. Gaining a clear understanding of the state control logic for each state of the layer in
section 1.4 will help relate and interpret the output signals summarized in Table 2, as well as understand their expected
behavior during the operation of the code.

Table 2. Output Signals from the Channel Coding Layer Block

Signal Name Signal Description

No Bit Lock Signal

Represented as either “1’ or “0” and serves as an enable signal to

indicate that a channel activation has occurred. This signal goes Low

following a detection of a TCAi:=’1’ and goes high following a channels

deactivation TCAi:=’0’.

Selected Channel Value

signal
Represents the value of channel that has been selected.

End of Sequence Sign

Signal

This signal is asserted to indicate normal end of the CLTU

transmission.

Abort Signal
This signal is asserted to signal the upper layer to abort the entire

octets, assuming any code blocks had already been sent.

Output Code block Represents the outputted code blocks

Figure11. Coding Layer implemented Design Entity I/O Ports- VHDL Script

10

1.4.5 Channel Coding Layer State Machine Diagram

The below showcases the final state diagram, illustrating the critical event instructions that trigger transitions
between the three states.

Event Event Description Transition

Event 1 CHANNEL ACTIVATION S1 ➔ S2

Event 2 (c) CHANNEL DE-ACTIVATION S2 ➔ S1

Event 3 Selection of the first channel with the Start

Sequence

S2 ➔ S3

Event 4 Tail Sequence Detection

Filler bit :=’1’ for corrected code block

Uncorrectable code block

S3 ➔ S2

Event 2 (b) > 37 code blocks were accepted

Timeout on the TCC- channel Clock signal

S3 ➔ S2

Event 2 (a) CHANNEL DE-ACTIVATION S3 ➔ S1

Figure 12. Channel Coding State diagram Description

or
Uncorrectable code block

or

11

1.5 Implementation, Results, and Discussions - (Control State Logic Design)

The proposed model of the state control logic of FSM for the coding layer (for 3 channels) has been
implemented using VHSIC Hardware Description Language (VHDL) and simulated in ModelSim. A test bench was also
generated to verify the functionality of the design. All events depicted in Figure 12 have been tested to ensure that the
FSM transitions correctly between the mentioned states. Note that the SEC decoder has been treated as a black-box
component and has not yet been implemented in this design. The primary objective of this simulation was to test the
receiving end for input synchronization, channels activation, start sequences detection, data stream sampling, and
channel selection, along with all critical events previously mentioned that cause state transitions. Design parameters
such as system clock frequency, channel clock frequency, and channel baud rate have been selected for this simulation
based on the specific requirements of the intended design.

1.5.1 Waveform Simulation Results using MODELSIM

1.5.1.1 Tests Performed on One Channel (Ch 0) for Proof of Concept.

• Results for Tests E1 and E3 and E4 (S1➔S2➔S3➔S1)

Shown Above are the waveform results when Event 1 is triggered which is when channel 0 becomes
activated. As TCA(0):=’1’ we expect the NO Bit Lock signal to go low and this transitions the system to
Search State where the search for start sequence will take place.

Expected results: TCA(0):=’1’ ➔ NO_BIT_LOCK = 0 ➔ S1->S2.

Figure 13. Event 1- Channel Activation on channel 0 Waveform

12

Note that in this design, As TCAi signal goes high, sufficient time is given before No Bit Lock signal

goes to “0” to avoid issues caused by signal noise or glitches. This prevents us from mistakenly

detecting a TCA signal that is not actually asserted and ensures its valid, not just a result of noise.

Following the detection of channel 0 TCA in figure 13, the FSM transitions to Search state (S2). Search
State (S2) is illustrated clearly in Figure 15, where the channel clock signal (TCC) and the channel
symbol stream signal (TCS) appear as soon as the No Bit Lock signal goes low, indicating that we have
entered S2. In this state, the system searches for the start sequence by sampling the TCS signal on
every falling edge of the TCC and the rising edge of the system clock. In this scenario, the first 16
incoming bits received were exactly “0xEB90”. Once the start sequence is detected on channel 0, the
Selected_Channel_Value_Signal is set to “001”, indicating that channel 0 has been selected. This
event triggers the FSM to transition to the Decode State (S3), locking the selection onto channel 0.

Figure 14. Event 1- Channel Activation on channel 0 Waveform

Figure 15. Event 3 – Start Sequence Detection on channel 0

13

The figure above shows the waveforms in the Decode State. The selected_channel_value_S signal indicates channel
0 is selected. In this scenario, Data_load_s represents the transmitted bits, which is "0x24" repeatedly, and similarly,
checksum_load_s represents the tail sequence pattern. The incoming data will be sampled from the TCS signal and
packed into octets, with every 8 octets forming a code block. These code blocks are continuously sampled and
transmitted through the code_block_out_Signal until an event triggers a state change. Note that the SEC decoder
has not been implemented yet, so the sampled data is directly outputted through the output signal assuming it
successfully passed the decoder.

Figure 17 shows the waveforms for a section of a code added in our design. In this paper’s design code, a section was
added to check if any channel has been deactivated because it reached the end of overall transmission i.e end of CLTU
(Command Link Transmission Unit) and the tail sequence has been detected. If the TCA signal for any selected channel
goes low during S3, the system checks if the end-of-sequence signal (end_of_sequence_sign_s) is asserted which
indicates the end of CLTU transmission. If it is, the system transitions to the search state while setting
selected_channel_value_signal to “000” as shown above. Once it’s transitioned to S2, because No TCA is detected
search cannot take place and hence it’ll transition back to the inactive state with Setting NO Bit Lock signal to “1”.

Figure 16. Channel 0 Transition to Decode State (S3)

Figure 17. Depicting Event 4 (Tail sequence) - Channel 0 Transition to S2 then to S1

14

• Results for Test E2 (c)

In test E2(c), TCA will go low in the middle of the search state. Expected result is for the system to

transition from S2-->S1, therefore NO_BIT_LOCK: = 1 & Selected Channel Value:=000.

• Results for Test E4 (Case 2: Assuming a correct code block with filler bit ‘1’)

In this E4 Test, the data loaded is "0x33", which ends with a binary 1. Once the bits are sampled and
packed into a code block, the last bit of the code block will be 1. As a result, E4 is triggered, and the
expected outcome is setting END_OF_SEQUENCE_SIGN := '1'.

Figure 18. E2(c) - Channel 0 Transition from S2 to S1 due to channel deactivation

Figure 19. E4 – Code block rejection due to filler bit: =’1’

15

• Results for Test E2(b) – (Case 1: More than 37 code blocks, Case 2: Timeout on TCC)

In Test E2(b) Case 1, more than 37 code blocks were sent, indicating a checksum error as the last packet is
not the end of the sequence. In Case 2, the TCC signal goes low and exceeds the timeout value set for this
design. The expected outcome for both cases is for the system to transition from S3 to S2, with ABORT set
to '1'.

Figure 20. E2(b) – Case 1 >37 code blocks were sent without encountering the tail sequence

Figure 21. E2(b) – Case 2: Timeout value on TCC channel 0

16

• Results for Test E2(a)

In Test E2(a), the TCA signal goes low during the middle of the "Decode State." The expected result is for the
system to transition from S3 to S1, with NO_BIT_LOCK set to '1'.

Figure 22. E(a) – channel deactivation during Decode state

17

1.5.1.2 Test for Race Condition on All Three Channels

Figure 23 shows the race condition test performed across all channels. As clearly shown, Channel 1 wins the selection,
with selected_channel_value_S set to '010'. This occurred because Channel 1 was the first channel detected with the
start sequence. This can also be predicted from the waveforms, as the TCS signal first arrives on Channel 1, assuming
the start bits are correct. As a result, the selection gets locked onto Channel 1, and as shown in the lower part of Figure
23, the outputted code blocks are sampled from Channel 1's data.

Figure 23. Race Condition Test on All Activated Channels

18

1.6 Single Error Correction (SEC) Decoder Overview

 As discussed in the previous sections, the coding layer uses a BCH (63,56) Decoder that operates in single
error correction and double error detection mode (SEC). This decoder has been specifically selected for the decoding
process because this paper assumes that the data on the sending end has been encoded using a BCH (63,56) Encoder,
with n = 63 representing the code word length, n – k = 7 parity bits, and k = 56 information bits [2]. This encoding
procedure processes 56 information bits and generates 7 parity check bits at the sender’s end using the polynomial
generator in equation (1) [4], which is used for error control at the receiving end. The data is structured in the format
shown in Figure 4 for each BCH code block.

• g(x) = x7 + x6 + x2 + 1 Equation (1)

Paper [2] clearly explains the encoding algorithm for the BCH (63,56) code. With this foundational knowledge of the
BCH Encoder, we now proceed to the decoding phase, focusing on how the transmitted BCH code block is received
and decoded using the SEC Decoder. Assume the transmitted code block is C(x), and due to channel errors e(x), the
received code block at the decoder is R(x)

• R(x)= C(x) + e(x) Equation (2)

As mentioned previously, the goal of the decoder is to check the error in the BCH code blocks using SEC mode which

can correct single error bit and detect two error bits.

The BCH decoder operating in SEC mode consists of several functions that generate the outputs demonstrated in the

block diagram above. These outputs are used for making final decisions during the decoding process on whether to

accept the code block or reject it. The decoder can correct only single-bit errors; if a two-bit error occurs, the code block

will be rejected. Below is a description of the output signals for the intended future implementation design of the

decoder:

• Syndrome Value: The syndrome value is generated by a syndrome generator implemented within the
decoder. This generator computes the syndrome by performing a mathematical operation on the received
code block [6]. The BCH decoder’s syndrome detection circuit can be designed in two ways:

•
1. Using a syndrome generation (dividing) circuit to calculate the syndrome value and a lookup table to

determine the error location based on the calculated syndrome values, as described in [2].

Figure 24. SEC Decoder Block Diagram

19

2. Following the SEC mode shift register decoder implementation from [1] & [6].

In both approaches, the decoder takes the 63 bits (56 information bits + 7 parity bits), ignoring the filler bit, to
generate the syndrome values:

• If the syndrome binary value is zero (all syndrome bits are zero), the code block is clean and error-free.

• If the syndrome value is non-zero, the decoder attempts to locate the error. If it is a single-bit error, the
error is corrected. If more than one bit is erroneous, the block remains uncorrected.

Both approaches will yield the same result: single-bit errors are corrected, and two-bit errors are detected. The
difference between [2] and [1],[6] lies in the syndrome function used to generate the values.

• Code Block Rejection Flag: This flag acts as an authentication pulse that validates whether the code block
is accepted or rejected. If the syndrome value is zero, the authentication pulse goes high, indicating the code
block is error-free. If the syndrome value is non-zero, two cases arise:

• If the code block contains uncorrectable errors (more than one bit error), the authentication pulse is
low, marking it as a "dirty" code block.

• If the error is a correctable single-bit error, the error is corrected, and the authentication pulse goes
high.

• Errors Detected: This signal specifies whether the error is even or odd.

• Output: The output is either the accepted or rejected code block, where the authentication pulse indicates
whether the block is valid or dirty.

1.6.1 Single Error Correction (SEC) Decoder Operation Logic Flowchart and Decoding Strategy

Figure 25. SEC Decoder Logic Flowchart

20

Table 3. SEC Decoding Process Strategy

Scenario Syndrome Bit Error Type Code block rejection
Flag (Authentication

pulse)

Description

Error-free = 0 - 1 (False) Valid

Erroneous =/ 0 1 -bit error 1 (False) Valid

Erroneous =/ 0 2-bit error 0 (True) Not Valid

As previously mentioned, missing a Tail Sequence can have significant consequences, as it may prevent the CLTU
reception procedure from returning to the SEARCH state for the next CLTU, potentially causing the entire subsequent
CLTU to be missed [1]. The SEC decoding process discussed earlier ignores the filler bit during its operation. To reduce
the chances of missing a tail sequence, the filler bit will be used as the final determining factor in the decoding process,
deciding whether to accept or reject the code block before passing it to the upper layers. This leads to the future
implementation outlined in Section 1.7, where we will describe how this decoder will be integrated into the VHDL design
we have modeled for the channel coding layer.

1.7 Future Work - Upcoming Implementation and Expansion

The purpose of this paper is not limited to implementing the proposed model for the state control logic (FSM) of the
channel coding layer using VHSIC Hardware Description Language (VHDL). The goal is to expand and enhance the
design, eventually completing the entire channel coding layer. Below are the planned areas for further study and
implementation to improve the performance of the current design. The approach is to start small and continually build
upon and refine the code. The following points outline the future work that will continue from this paper:

• Enhancing the CLTU reception procedure: The implemented VHDL design will be improved for detecting the start
sequence in relation to error handling. This will include the detection of both the start sequence (0xEB90) and its
inverse (0x146F), which addresses data ambiguity in the received bit stream caused by non-return-to-zero (NRZ)
encoding in the incoming start bit streams with allowing single bit error anywhere.

• Testing with consecutive CLTUs: The VHDL code was initially tested with single CLTUs sent independently (where
TCA’s drop between CLTUs, and the entire resynchronization process begins again). The future plan is to test the
design’s performance when sending consecutive CLTUs while maintaining bit synchronization on the channel. This
also includes evaluating whether CLTU organization could be improved by inserting idle or tail sequences between
them. This extension will be designed in VHDL and added to the current implementation [5].

• Developing a VHDL code for the SEC decoder: Further research will be conducted to develop the SEC decoder
following [1] and [6] ‘s approach. This implementation will include inverters, several shift registers, buffer registers
for temporarily storing information and parity bits, an EOD (Even-Odd Detector) to check parity, an SR (Syndrome
Register) to calculate the syndrome, and a PLR (Position Location Register) to detect errors within the code block.
A design study will be carried out to implement this system as recommended by CCSDS. The figure below shows
the circuit implementation of the Error Correction Mode Decoder provided by CCSDS [1].

• Incorporating the filler bit into the SEC decoder: The filler bit will be considered in the final decoding strategy for
improved performance. The intended algorithm for the decoding process at the receiving end is as follows:

1. Test the received code block (excluding the filler bit) for errors using the SEC.
2. If no errors are detected, the code block is accepted and sent to the upper layer without checking the filler

bit.
3. If one error is detected, check the filler bit:

▪ (a) If the filler bit is 0, the code block is corrected and accepted.

▪ (b) If the filler bit is 1, a CODEBLOCK REJECTION is declared.
4. If two errors are detected, the code block is rejected, and the filler bit is ignored.

However, further research is needed to develop and implement this in the design.

21

1.8 Conclusion

The Channel Coding Layer is a critical layer of the telecommand subsystem in any communication satellite. Following

the recommendations of CCSDS, we successfully designed a VHDL code for the state control logic at the receiving

end, which accomplished essential tasks such as input synchronization, channel activation detection, start sequence

detection, data stream sampling, and channel selection. These features, along with the critical events outlined in

Section 1.4, ensure the design meets the performance requirements according to CCSDS standards.

While the SEC decoder was treated as a black box in this initial VHDL implementation, it will be fully integrated in future

work, as detailed in Section 1.7. This addition will expand the current design, providing error correction capabilities and

further enhancing the robustness of the implementation. Additionally, several other improvements are planned to

elevate the performance and functionality of the coding layer, positioning this work as a foundational step toward a

more sophisticated and reliable coding layer for a packet telecommand decoder system.

Figure 26. SEC Decoder Operation [1]

22

REFERENCES

[1] Consultative Committee for Space Data Systems. TC Synchronization and Channel Coding—Summary of Concept
and Rationale. Issue 3, CCSDS 230.1-G-3, October 2021, Washington, DC, CCSDS.

[2] Arunkumar, S., and T. Kalaivani. FPGA Implementation of CCSDS BCH(63,56) for Satellite Communication. IEEE
International Conference on Electronics Design, Systems and Applications, 2012.

[3] Consultative Committee for Space Data Systems. TC Synchronization and Channel Coding. Issue 4, CCSDS 231.0-

B-4, July 2021, Washington, DC, CCSDS.

[4] MA28140: Packet Telecommand Decoder Datasheet. July 2002.

[5] Consultative Committee for Space Data Systems. Telecommand: Summary of Concept and Service. CCSDS 200.0-
G-6, Issue 6, January 1987, Washington, DC, CCSDS.

[6] Nugroho, M., and I. Choiriyah. Simulation of coding layer of telecommand based on the Consultative Committee for
Space Data Systems recommendation. IOP Conference Series: Earth and Environmental Science, vol. 284, 2019,
p. 012050.

[7] Mathew, Priya, Lismi Augustine, Sabarinath G., and Tomson Devis. Hardware Implementation of (63, 51) BCH
Encoder and Decoder for WBAN Using LFSR and BMA. Department of ECE, St. Joseph’s College of Engineering &
Technology, Palai, Kerala.

